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Figure 1. Defining a surface as a mapping from the uv plane to a surface
embedded in xyz space. Point P in the uv plane is mapped onto point P' on the
surface. The lines u = constant and v = constant are mapped into two curves on
the surface. Taking the cross product of these two curves yields a normal to the
surface. Furthermore, an element of area in the uv plane maps into an element
of area on the surface.

Surfaces and Surface Integrals

Surfaces

We can define a surface as a mapping from the uv plane to a surface embedded in Xyz space as shown in Figure 1.
Write any point on the surface as r = (X, Y, Z) and write the mapping as r = r(u,v). Then the equation

dr:gdu+gdv, (1
ou ov

describes how a small movement (du,dv) in the uv plane causes a small movement on the surface. In particular if
we move along the line v = constant then dv = 0 and the movement on the surface is

dr=2du,
ou

or
i.e. in the — direction. Similarly if we move along the line u = constant then du = 0 and the movement on the
ou

surface is
or

dr=—-dyv,
ov

o o .. . N . .
i.e. in the — direction. Taking the cross-product of these two directions gives a normal N to the surface. Dividing
ov

N by its own length gives a unit normal, n:
or or

N=—x—, and n:i. 2)
ou ov IN|



Example 1: Give one possible parameterization of the plane 6x +4y +2z = 8 and use it to find the unit normal to
the plane.

Solution: The plane can be parameterized as r = r(u,v) = (u, vV,4-3u— 2V) . In other words we can let x =u, y =
v and then z=4-3X—-2y becomes z =4 —3u—2v. Then the normal vector is

i j k
or o
N=T o (1,0-3)%(0,1-2)=[1 0 -3[=(3.2.1),
ou ov
01 -2
and the unit normal is
-1
n=--(32,1).

Example 2: Give one possible parameterization of the sphere x> + y2 +2% =a” and use it to find the unit normal
to the sphere.

Solution: Referring to the figure to the right, recall that
spherical coordinates are defined by:

X =rsin@cos6
y =rsin@psin®
Z=rcosQ

Thus we could parameterize the sphere as

r=r(u,v)=(asinucosv, asinusinv, acosu),

Figure 2
where U and v are equivalent to ¢ and 6 respectively. The normal vector is
or oOr
= — X —
ou ov
= (acosucosv, acosusinv, —asinu)x (—asinusinv, asinucosv, 0)
i j k

=a?| cosUcosv cosUsinv —sinu

—sinusinV sinucosVv 0

=a’sinu (sinu cosV,sinUu sinv,cosu)

Notice that in the last expression the quantity in brackets is proportional to the vector r itself as expected. The unit
normal is

n = (sinUcosv,sinusinv,cosu),

as is easy to verify. Notice also that specifying U and v specifies a point r and a normal n on the sphere.




Surface Integrals

We are interested in two types of surface integrals. The first kind (the second one mentioned in Kreyszig, page 501)
is of the form

[Jo(r)an, (3)

where S is the surface, dA is an element of area of the surface, and G (r) is a scalar field defined at every point r on
the surface. For example if G (r) is the charge per unit area then this integral will yield the total charge on the
surface. If G(r)=1 then this integral will simply yield the total area of the surface. This kind of surface integral
does not distinguish between the back and front of the surface.

The second kind of surface integral (page 496 of Kreyszig) does. It is of the form
[[F()-n(r)an. @)
s

where S is an orientable surface, dA is an element of area of the
surface, F is a vector field defined at every point r on the surface
and n is a unit vector that at every point of the surface is normal

to the surface and points out of the surface. pvdt

This type of integral occurs for example when F = pv, where p dA v
is the mass density field (dimensions: mass/volume) and v is the '
velocity field (dimensions: distance/time). Then Eqn.(4) yields
the mass flux (dimensions: mass/time), i.e. the mass per unit time
passing through surface S, so (4) is often called a flux integral.
The figure to the right shows that pv-ndAdt is the mass
crossing surface element dA in time dt. Note the presence of the
dot product. For example if n and v are parallel then the mass
crossing the surface is a maximum and if n and v are
perpendicular then the mass crossing the surface is zero.

Figure 3

To actually compute one of the surface integrals (3) or (4) we use the following technique: we let du and dv be

differentials in the uv plane, the product du dv be an element of area in the uv plane, and ”du dv be the entire area

R
of a region R in the uv plane. The corresponding quantities generated on the surface are shown in this table:

quantity generated in the uv plane generated on the surface S
element of length du or dv ﬁdu or ﬂdv
ou ov
element of area du dv or x Or| dudv
ou ov
total area _[ dudv Jj or , or dudv
R o ou




Thus the first type of surface integral can be evaluated as

”G )dA = ”G r(u,v))

and the second type of integral can be evaluated as

”F r)dA = ”F r(u,v)) (—rx—jdud (6)

Note that if we let G = 1 in Eqn.(5) then we get the following formula for computing the surface area:

s=[Jon-[I[3

—X—

ou ov

dudv, %)

du dv. (7

Example 3: (Kreyszig, Page 503, # 9) Evaluate the flux integral
J.J.F -ndA in the case that the vector field is F = (X, y,2) and surface S

P N

s
. . 2
is deﬁnedbyr:(X,y,Z):(UCOSV, usinv, u ),OSUS4,—nSVSn.

Solution: Set up Eqn. (6). The surface S and the field F are shown.

Step 1 - Find the field on the surface: Notice that given any point
(X,Y,2) in space the field F is determined and given any value of U and y

Vv a point on the surface is determined. By substituting the equations

X
defining the surface, X = UcosV, y = usinVv, Z = u2, into the field F we
find that the field at any point on the surface is given by
F(r(u,v))= (u cosV, usinv, u’ )
. or oOr .
Step 2 - Find the normal N = — x — at any point on the surface: We find
ou ov
or or
N =—x—=(cosV, sinV, 2u) x (-usinv, ucosv, 0) = (—2u2 cosv, —2u” sinv, u).
ou ov

Step 3 - Evaluate the dot product of F and N on the surface:
F(u,v)-N(u,v) = (u cosV, usinVv, uz)-(—2u2 cosV, —2u’ sinv, u) =-u.

Step 4 - Evaluate the surface integral by integrating over U and v:

4

”Fuv N(u,v)dudv = j j —u dvdu——znx%:—IZSn



Example 4: (Kreyszig, Page 503, # 6) Evaluate the flux
integral JJF -ndA in the case that the vector field is
S
= (y3,x3,z3) and surface S is defined by x> +4y2 =1,

Xx>20,y>0,0<z<h.

Solution: The surface S and the field F are shown to the
right. AL

Step 0 - Express the surface in parametric form: One
possibility is to let X =u, y =% 1-u? , Z=V, with
0<u<l1,0<v<h.

Step 1 - Find the field on the surface: By substituting the equations defining the surface into the field F we find
that the field at any point on the surface is given by

F(( )) ( (1 u2)3/2 3).

or or
Step 2 - Find the normal N = — x — at any point on the surface: We find

ou ov

or or ; u ] u
N=—x—= 13_7—30 X(ana 1): _7—9_190 .
ou ov 1-u? 1-u?

Step 3 - Evaluate the dot product of F and N on the surface:

u
F(u,v)-N(u,v) = (F0-u*)", u 3)-[—% ,—1,0]:—%u(1—u2)—u3
Step 4 - Finish by integrating over u and v:

J F(u,v)-N(u,v) dudv:'[)1 J‘;(—lu—l—Su3)dvdu:—1—7h.

Example 5: Do the above example using Maple.

Define the field F in terms of X, y and z.
> F = [y"3,x"3,z"3];

F = [y X 23]
Define the surface parameterized in terms of u and v.
> r = [u,sqrt(1-un2)/2,v];

7= u,i l—uz,v]

2

Step 1 - Find the field on the surface:
> FonS := subs({x=r[1], y=r[2], z=r[31}., [FIL1]1.FI[21.F[31D):;



FonS :=[% (1 — u2)3/2, u3,v3]

Step 2 - Find the normal N=drdu x drdv, where:
> drdu := [diff(r[1],u), diff(r[2],u), diff(r[3],w];

drdu =1, L #,O
2 1—u
> drdv := [diff(r[1],v), diff(r[2],v), diff(r[3]1.v)];

drdv =[0,0,1]

Load the linear algebra library. Then we can take the crossproduct.
> with(linalg):
> N:=crossprod(drdu,drdv);

L u gy

N =
l—u2

Step 3 - take the dot product of F with N
> integrand:=FonS[1]*N[1]+FonS[2]*N[2]+FonS[3]*N[3];

integrand = _1L6 (1 — uz) u—u

Step 4 - do the integrals
> inner_int:=Int(integrand,v=0._h);

(Lo oy 3
0[ 16(1 u)u u)dv

> surface_integral:=Int(inner_int,u=0..1);

inner_int =

1.h

(—L (1 —uz) u —u3jdvdu

surface_integral = [ T

oo
> value(surface_integral);

17
64

Example 6: (Kreyszig, Page 504, # 12) Evaluate the surface
integral J.J.G(r) dA in the case that the scalar field is

s
G =cosX+sinYy and surface S is the portion of plane shown.

Solution:
Step 0 - Express the surface in parametric form: One

possibility isto let x=u, y=v, z=1-u-v, with
0<v<1l-u,05u<l.

Step 1 - Find the field on the surface: By substituting the
equations defining the surface into the field we find that the
field at any point on the surface is given by G = cosu+sinv.



or oOr
Step 2 - Find the normal N = — x— at any point on the surface: We find:
ou ov

N=2E O (1, 01 (0, 1=1) = (1, 1, 1),
ou ov

We could have guessed this result since the plane has the equation x+y+2z =1. Note that |N| =43.

Step 3 - Finish by integrating over U and v:

HG (r)dA= J.J.G (u,v)[N(u,v)|dudv = \/EJ‘OI J:(;:uosu +sinv)dvdu = +/3 (2 - cos(1) - sin(1)).

Here is the Maple dialog to evaluate the above surface integral:

Define the field G in terms of x, y and z
> G:=cos(X)+sin(y);

G :=cos(x) + sin(y)

Define the surface parameterized in terms of u and v
> r:=[u,v,1l-u-v];

re=uv,1 —u—v]
> GonS:=subs({x=r[1],y=r[2].z=r[3]}.6);
GonS :=cos(u) + sin(v)
> drdu:=[diff(r[1],u),difF(r[2],u),difF(r[3],W];
drdu :==[1,0, 1]
> drdv:=[diff(r[1],v),diff(r[2],v),difF(r[3]1,V)];
drdv =[0,1, -1]

> N:=crossprod(drdu,drdv);
Ne=[111]

> magN:=sqrt(dotprod(N,N));
magN =+ 3
> integrand:=GonS*magN;

integrand = (cos(u) + sin(v)) 3

> inner_int:=Int(integrand,v=0..1-u):
> surface_integral:=Int(inner_int,u=0..1);
1.1—u
surface_integral = [ [ (cos(u) + sin(v)) v 3 dvdu
070
> value(surface_integral);

23 — /3 sin(1) — 3 cos(1)
> evalf(%);
1.07080007



